Computer Algorithms and
Architectures

William D. Gropp
Mathematics and Computer Science
www.mcs.anl.gov/—gropp

Algorithms

e What is an algorithm?
¢ A set of instructions to perform a task

e How do we evaluate an algorithm?
¢ Correctness

¢ Accuracy
e Not an absolute

¢ Efficiency
e Relative to current and future machines
e How do we measure efficiency?
¢ Often by counting floating point operations
¢ Compare to “peak performance”

University of Chicago Department of Energy

Real and ldealized
Computer Architectures

e Any algorithm assumes an idealized
architecture

¢ Common choice:
e Floating point work costs time
e Data movement is free

¢ Real systems:

e Floating point is free (fully overlapped with other
operations)

e Data movement costs time...a lot of time
e Classical complexity analysis for numerical
algorithms is no longer correct (more
precisely, no longer relevant)
¢ Known since at least BLAS2 and BLASS3

University of Chicago Department of Energy

CPU and Memory Performance

1000
DRAM

~ . Performance

2 100 e -

o \\.

"c—U‘]

©

X

S A . \

O ¢ . [\

3 L4 -
Floating /1 N
point 1 : : : : : - Floating
relevant Aug-76 Aug80 Aug84 Aug88 Aug92 Aug96 Aug00 point
irrelevant

Date of Introduction

» Supercomputer (Cray, NEC) = RISC (HP, MPPS) CISC (ntel) = Memory

University of Chicago Department of Energy

Trends in Computer
Architecture |

e Latency to memory will continue to
grow relative to CPU speed

¢ Latency hiding techniques require
finding increasing amounts of
Independent work: Little’s law implies

e Number of concurrent memory
references = Latency * rate

e For 1 reference per cycle, this is already
100—-1000 concurrent references

University of Chicago Department of Energy

Trends in Computer
Architecture 11

e Clock speeds will continue to
Increase

¢ The rate of clock rate increase has
increased recently ©

¢ Light travels 3 cm (in a vacuum) in
one cycle of a 10 GHz clock

e CPU chips won’t be causally connected
within a single clock cycle, 1.e., a signal
will not cross the chip in a single clock
cycle

e Processors will be parallel!

University of Chicago Department of Energy

Trends in Computer
Architecture |11

e Power dissipation problems will force more
changes

¢ Current trends imply chips with energy densities
greater than a nuclear reactor

¢ Already a problem: In 2003, an issue of consumer
reports looks at the likelihood of getting a serious
burn from
your laptop! 4

¢ Will force Sun’s
new ways Surface

to get
g
Hot plate Pentium lll ® processor
Pentium |l ® processor

performance,
such as

1 Pentium Pro ® processor
extenSI_/e i386 Pentium ® processor
parallelism 486

Watts/cm?

1.5p 1p 0.7p 0.5p 0.35p 0.25p 0.1Bp 0.13p O.1p 0.07u

University of Chicago Department of Energy

LANS

Itanium Power Dissipation

e Power is not
uniformly
distributed
across chip

e Peak power
densities
growing even
faster

University of Chicago Department of Energy

Cconseqguences

e Gap between memory and
processor performance will
continue to grow

e Data motion will dominate the cost
of many (most) calculations

e The key Is to find a computational
cost abstraction that Is as simple
as possible but no simpler

University of Chicago Department of Energy

Architecture Invariants

e Performance iIs determined by memory
performance

e Memory system design for performance
makes system performance less
predictable

e Fast memories possible, but
¢ Expensive ($)
¢ Large (meters3)
¢ Power hungry (Watts)

e Algorithms that don’t take these
realities into account may be irrelevant

University of Chicago Department of Energy

Node Performance

e Current laptops now have a peak speed
(based on clock rate) of over 2 Gflops
(20 Crayls!)

e Observed (sustained) performance Is
often a small fraction of peak

e Why iIs the gap between “peak” and
“sustained” performance so large?

e | ets look at a simple numerical kernel-
sparse matrix-vector multiply

University of Chicago Department of Energy

Realistic Measures of Peak Performance

Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

B Theoretical Peak
m Mem BW Peak

= Oper. Issue Peak
= Observed

6000 -
5000 -

4000 -
3000
2000
1000 1

O

University of Chicago

SP Origin T3E

Pentium Ultra 11 Power4 Xeon

Department of Energy

What About CPU-Bound
Operations?

e Dense Matrix-Matrix Product

¢ Most studied numerical program by
compiler writers

¢ Core of some important applications

¢ More importantly, the core operation
In High Performance Linpack

e Benchmark used to “rate” the top 500
fastest systems

¢ Should give optimal performance...

University of Chicago Department of Energy

The Compiler Will Handle It (?)

Large gap between
natural code and
specialized code

Level 3 BLAS On One Processor of a Sun UltraSparc 2200

Hand-tuned—_,

B Yendor BLAS B ATLAS/GEMM-based BLAS O Reference BLAS

230 1

Compiler

DGEMM DSYMM DSYR2K DSYRK DTRMM DTRSM

From Atlas

Enormous effort required to get good performance

University of Chicago Department of Energy

Performance for Real
Applications

e Dense matrix-matrix example shows that even
for well-studied, compute-bound kernels,
compiler-generated code achieves only a small
fraction of available performance

¢ “Fortran” code uses “natural” loops, i.e., what a user
would write for most code

¢ Others use multi-level blocking, careful instruction
scheduling etc.
e Algorithms design also needs to take into
account the capabilities of the system, not just
the processor

¢ Example: Cache-Oblivious Algorithms
(http://supertech.lcs.mit.edu/cilk/papers/abstracts/a

bstract4.html)

University of Chicago Department of Energy

The Computer As Labor-
Saving Device

e Most current approaches to developing high-
performance software are based on either
¢ Compiler performs miracle
¢ “Heroic” (and burned out) programmer

e Many of these techniques use transformations
that can be mechanically applied, but require
some programmer guidance.

¢ Use the computer to apply these!
e (Why is this so surprising?)
¢ Examples include ATLAS (dense linear algebra),
FFTW, PhiPac

¢ New projects include SALSA (Self-Adaptive Linear
Solver Architecture)
e Joint work with Eijkhout, Dongarra, Keyes

e Includes guides for choosing preconditioners,
orderings, decomposition

University of Chicago Department of Energy

Conclusions

e Performance models should count data
motion, not flops

e Computers will continue to have
multiple levels of memory hierarchy

¢ Algorithms should exploit them

e Computers will be parallel

¢ Algorithms can make effective use of
greater adaptivity to give better time-to-
solution and accuracy

e Denial I1s not a solution

University of Chicago Department of Energy

